
The Xen Roadmap

Ian Pratt, July 2006

Since around October 2005 the main focus of the Xen project has really been
around stability: getting the 3.0.0 release out, and then ongoing hardening
in preparation for FC5 and SLES10. We’re now in the fortunate position of
having really very few outstanding bugs, and now have excellent automated
test infrastructure to help us maintain this level of quality.

It’s now time to turn thoughts to further development and work out where
we want to take the project toward the next major release, Xen 3.1 (or 4.0,
whatever we end up calling it). This document lists what I believe are the
priorities over the coming months, and hence what the core Xen team will
be investing effort in.

1 Releases

Rather than the ‘big bang’ 12 month development cycle used in Xen 1.0, 2.0
and 3.0, we want to make the development toward the next major release far
more incremental. We aim to continue the current practise of going through
a stabilization phase and having point releases every 10-12 weeks. Just as
with Linux, the point release will be maintained with bug fixes until the
next point release.

One side effect of this approach is that at the time of a release not all
features that are new in the code base may necessarily be stable in time
for the release. We won’t hold the release, but will simply disable such
features or document the issues. The aim is obviously to avoid regressions
in functionality that worked in earlier releases.

1



2 Performance, Scalability

During the Xen 3 development cycle the vast majority of effort went in to
correctness rather than performance and scalability. It’s pretty clear from
looking at historic benchmark data that some performance bugs have crept
in along the way: there really is no good reason why xen3 should perform
worse than xen2 on any benchmark, but measurements indicate there are
currently regressions on some benchmarks. Clearly, investigation is called
for. I expect there to be quite a bit of low hanging fruit, in particular it is
likely that various of the Linux kernel version upgrades have broken certain
assumptions causing us to exercise ‘slow paths’ rather than the fast path we
expect it to be using. These need to be tracked down and fixed.

We’re actually quite well-armed with performance monitoring tools these
days, so hopefully this shouldn’t be too difficult: xen-oprofile is a sample-
based profile system useful for looking at system-wide CPU consumption.
The xen software performance counters are useful for tracking event occur-
rences in Xen (and hence spotting anomalously high counts of supposedly
rare events), and can also be used to collect various histograms of scheduler
and memory management data. There is also xentrace which can be enabled
to collect timestamped trace records into a buffer to enable detailed event
time-lines to be collected.

We expect the vast majority of Xen deployments to be on two socket server
boxes, with some four socket, and we expect dual core to be commonplace.
Hence, we believe that the sweet spot to optimize xen for is 1-8 CPU sys-
tems. 32 way and larger systems are currently supported and getting good
performance on them is certainly desirable in the mid-term. However, we
must endeavour to ensure that such optimizations do not harm smaller sys-
tem performance. If necessary, compile time target selection could be used,
but I hope this won’t be required. One of the key features which will help
both small and large system performance is support for NUMA-aware mem-
ory allocation. This is useful even on two socket AMD boxes. I expect to see
the core Xen mechanisms in the tree in short order, but implementing page
migration (particularly the policy for doing so) will be a longer term goal.
NUMA topology-aware CPU scheduling will also need to be developed, and
is discussed in a later section.

2



3 Guest API stability

The Xen 3 Guest API is intended to be a stable interface that will be
maintained in a backward compatible fashion. Old 3.0 guests should run on
a new hypervisor. The converse of running new guests on an old hypervisor
has not been a commitment, but we should obviously plan to transition
toward this. This becomes more important as soon as a given version of
Xen starts gaining wide use in an Enterprise Linux distro (e.g. SLES10).

The xen guest API includes all the virtual IO interfaces (e.g. netfront,
blkfront etc). We expect there to be some evolution in these protocols, but
nothing that can’t be supported in a compatible fashion: xenbus provides
the necessary mechanisms for enabling feature selection, or even selection of
alternate front or backend drivers.

So far, there has been no commitment to maintain a stable interface be-
tween privileged domains (dom0) and xen, or between xend and dom0. We
currently expect xen, the dom0 kernel, and the xend tool stack to be a
“matched set”. These interfaces will continue to evolve for at least the next
six months, so no stability is guaranteed, though interface breakage will be
avoided where possible as it’s clearly inconvenient for developers. Inter-
face version numbers should be updated when this happens to avoid subtle
incompatibilities.

The continued evolution of the privileged domain interfaces is being driven
by a number of factors: changes such as the new pci device pass-through
code, support for IOMMUs, integration of ia64 and ppc, more fine-grained
security capability delegation. It should be a long term goal to stabilize this
interface, but for the moment 2.6 Linux is in the favoured position of being
the in-tree privileged domain OS, with NetBSD and Solaris playing catchup.

One of the key APIs we expect to evolve and then stabilize quickly in the
next 2-3 months is the xen control API, encompassing all the various XML
parameters that configure and control guest domains. The roadmap for the
xen control stack is set out later in this document.

4 OS Support

The following OS kernels have been ported to the Xen3 32b guest ABI:
Linux 2.6.16, 2.6.9-34.EL, 2.4.21-40.EL, 2.6.5-7.252, NetBSD3, FreeBSD7.0

3



and OpenSolaris10. Work is planned to update the Plan9 port to xen 3,
and the API stability will hopefully encourage other OSes to be ported too,
such as OpenBSD. The only x86 64 OS port is currently 2.6.16, but other
ports are underway.

Since the 3.0.0 release there have been various backward compatible en-
hancements to the Xen guest API, such as the ‘feature flags’ and ‘transfer
page’. These mechanisms are intended to make backward compatibility
easier to maintain in future, and will be used to enable features such as sup-
porting 32b guests on a 64b hypervisor, running xen kernels on bare metal,
and running xen kernels as HVM (fully virtualized) guests. We would urge
maintainers of kernel ports to adopt the new feature flags and transfer page
ASAP if they haven’t already done so.

5 Getting xen support in kernel.org Linux

The work to get xen support into upstream kernel.org Linux is a crucial
work item for the xen community. Although it costs considerable man effort
right now, it should reduce the maintenance burden in the long run as hy-
pervisor support will be a more visible consideration for Linux developers,
and hopefully treated as a first class citizen.

The full xen support for Linux patch maintained in the main xen repository
is really quite large. As well as supporting Linux as an optimized SMP
guest, it has all the functionality necessary to run Linux as a domain 0 with
access to physical hardware, support for IO virtualization backends, support
for the control tools etc.

It is clear that getting such a large patch into kernel.org in one go is infea-
sible, so a more incremental approach has been adopted. Our initial aim is
to submit patches that enable Linux to run as a simple Xen guest, without
various of the more invasive paravirtualization optimizations that provide
rather better virtual memory and SMP performance. A patchset has been
prepared by Christian Limpach, Chris Wright and Jeremy Fitzhardinge, and
is being iterated on LKML.

The path into kernel.org has been muddied by the discussion around VMware’s
VMI proposal. VMI proposes an abstraction layer for the hypervisor to guest
API used for CPU and memory management virtualization, and doesn’t at-
tempt to address the virtual IO, hardware access, and control tool APIs

4



that the Xen patches address. VMI is also currently only addressing 32b
x86 (Xen is currently x86 64 and ia64 too).

Comparing VMI with a subset of the xen patch, there’s actually quite a lot
in common. The bulk of both patches refactor i386 code to provide hooks,
and it is hoped that these common changes can be upstreamed quickly,
reducing the size of the external patch that must be maintained. Rusty
Russell is taking the lead on this. At some point there will be a discussion
about what the correct hypervisor API abstraction is, and hence the extent
to which paravirtualization can be exploited to improve performance. The
Xen team will be arguing vigorously that a rich interface that is part of
the kernel source (and hence GPL) is more easily maintainable, and enables
‘deeper’ paravirtualization, and hence more opportunities for performance
enhancements.

It is conceivable that what ends up being merged into kernel.org may require
some changes to the xen 3 guest ABI. We would certainly hope that these
could be made backwards compatible with existing xen guest OSes, but we
may have no choice other than to rev to a Xen 4 ABI. This would be a great
shame as ABI stability is a key hypervisor requirement, but this would at
least be a one off change.

6 Control tool stack

Following on from the discussions at the last Xen summit, a number of
significant changes are planned for the xen control tool stack over the next
few months. In the mid-term, the DMTF CIM model for VM life-cycle
management from the virtualization and partitioning working group is likely
to emerge as the standard for configuring and managing VMs. Many of the
folks in the Xen community are already working in the DMTF in support
of the CIM model, as well as Microsoft in their Carmine tools. The joint
IBM/Novell/XenSource project to create CIM providers for Xen is of great
strategic importance. However, management via CIM is quite heavyweight
and intricate for some scenarios, so also having a simpler management API
makes sense. Indeed, having such an API will be useful for building the
CIM providers themselves.

XML config file and conversion tools. The first stage of xend development
will be to switch to using XML for all configuration data. We are in the
process of drafting a specification for an XML data-model for storing all

5



VM configuration data, and will be circulating this on xen-devel/xen-cim
shortly. This scheme is ‘inspired by’ the CIM data model, but the hierar-
chy is somewhat flattened and simplified to reflect xen’s requirements and
provide an easy to navigate model. The intention is that XML config files
conforming to this schema would replace the current python and SXP xend
config files. Since this is a user-visible change, creation of migration tools
will be required. Config files would no longer live under /etc, but would be
loaded into xend when a VM is created, and then stored as plain XML files
under /var.

xend VM life cycle management and storage extensions. Another addition
will be implementation of some simple VM life-cycle management inside
xend. The current tools already have a very limited form of this implemented
by the xendomains script which will preserve VMs across host reboots using
save/restore. Adding VM life-cycle management to xend means that we
will store state for VMs even if they are not currently running. This will
enable us to make operations like VM save/restore less dangerous from a
user point of view by tracking the resources (in particular, disk images) they
have reserved even when they are suspended. Further, support for simple
storage management will be added to xend, enabling call-outs to create new
disk images, create CoW snapshots etc. These will be implemented in scripts
that provide the functionality for different storage backends e.g. LVM, file
based, qcow, etc.

In previous and current Xen releases the protocol between ‘xm’ and ‘xend’
has not been documented and has undergone rapid change. Although the
internal xmlib API has generally remained relatively stable this has not
been a popular interface for developers building on top of Xen – most have
resorted to using ‘expect’ scripts to drive the xm command line.

XML-RPC xen control API plus C/C++/perl/python bindings. It’s now
important that we define a suitable message protocol and associated API,
rapidly switch xend and xm over to using it, and then provide client bind-
ings for common languages e.g. C++/perl/python. Libvirt will hopefully
help fulfil this role. Draft specifications for the message protocol are being
prepared and will be circulated shortly. The scheme is xml-rpc based, using
an SSL secured https transport to enable secure remote management, or
unix domain sockets for lightweight local management.

The protocol will support a notion of logging in as a given user, using PAM
to authenticate on the server. Since some of the RPC commands may be
long running (e.g. a VM relocation), the protocol supports the notion of

6



tasks running asynchronously in the background. The client can poll for
their completion or list outstanding tasks.

In addition to securing the control protocol, we also need to secure the
networking connections used for VM relocation. The intention is to split the
VM relocation operation into two, issuing a relocate receive that generates
a token that then must be presented when initiating a relocate send. Since
these network connections are performance critical, it is important we retain
the option to have just authentication without mandating encryption.

A further area where work is clearly required is developing a decent web GUI
for Xen. There have been a number of previous attempts at this by various
folk, but none have really gained traction. We would envisage that the GUI
would be implemented using presentation layer code that would communi-
cate with xend via the control protocol and generate HTML/javascript to
return to the browser. Possibly picking one of the existing web UI’s and
trying to get it in-tree will help focus efforts.

7 Virtual Hard Disk Images

Xen 3.0 supports a wide range of storage options for guest virtual disks,
including physical partitions (LUNs), LVM volumes, and ‘loop’ files. Use of
loop files has proved popular as they support sparse allocation, and are very
easy from a management/backup point of view (e.g. you can just copy the
files around). However, the loop driver has some serious deficiencies, in par-
ticular it buffers writes very aggressively, which can affect guest filesystem
correctness in the event of a host crash, and can even cause out-of-memory
kernel crashes in domain0 under heavy write load. Further, using sparse
files requires care to ensure the sparseness is preserved when copying, and
there is no header in which metadata relating back to the VM can be stored.

Given the popularity of the file-backed model, providing a robust and high
performance solution that supports it is highly desirable. Rather than using
raw image files, it makes sense to move to a format that supports header
metadata, sparse allocation independent of the underlying filesystem, and
copy-on-write support. We have spent time evaluating a number of existing
formats: VMware VMDK, Microsoft VHD, and QEMU QCOW. VMDK is a
hodgepodge union of several different formats used by VMware, and doesn’t
have much to recommend it. Further, the licencing terms aren’t entirely
clear about its GPL compatibility. Microsoft’s VHD format is pretty nice,

7



but explicitly doesn’t allow open source implementations. QEMU QCOW
looks to be the best of the bunch: It’s been part of the QEMU stable for over
18 months and had quite widespread use, and supports advanced options
like compression and AES encryption as well as sparse allocation and copy-
on-write.

The world doesn’t need another virtual hard disk format, so with Fabrice
Bellard’s blessing (QEMU author) we’re strongly advocating that the Xen
project adopt it. The licence on the current QCOW implementation is BSD,
which makes implementation with Xen and even 3rd party closed-source
tools easy (e.g. Virtual-to-Physical transfer utilities).

Given the various problems with the ‘loop’ driver, this doesn’t seem a good
starting point for implementing qcow support. The easiest approach seems
to be to build on the ‘blktap’ approach that is already in the tree and pro-
vides a way of implementing virtual block devices in user space. Work is
well under way to implement a ‘ublkback’ driver that supports all of the
various qemu file format plugins. A special high-performance qcow plugin
is also under development, that supports better metadata caching, asyn-
chronous IO, and allows request reordering with appropriate safety barriers
to enforce correctness. It remains both forward and backward compatible
with existing qcow disk images, but makes adjustments to qemu’s default
allocation policy when creating new disks such as to optimize performance.

8 Resource Control

One of the big deficiencies with Xen 3.0.2 is the static assignment of VCPUs
to single physical CPUs. Although domain creation attempts to do some
crude load-balancing placement on physical CPUs the assignment is not
updated, which can lead to gross imbalance between CPUs if e.g. all even
numbered VMs were to exit. Currently manual intervention with ‘xm vcpu-
pin’ is required to rebalance things.

A new CPU scheduler has recently been completed which should solve these
issues. It supports automatic migration of VCPUs between their allowable
CPU set, and actively balances VCPUs across CPUs in an attempt to max-
imise throughput.

The scheduler supports a notion of ‘weighted fair share’, enabling the relative
weights of guests to be set e.g. this guest should be able to get twice as much

8



CPU as this guest (assuming they are both CPU bound and runnable).
Further percentage CPU ceilings may be set to constrain the consumption
of a guest, e.g. limiting it to 10% of a CPU even if the CPU is otherwise idle.
[This non-work conserving option is useful in hosting environments where it
is sometimes desirable to stop customers having the opportunity to get used
to more resource than they’re paying for.]

For multi VCPU guests the scheduler tries to ensure that each (runnable)
VCPU accrues CPU time in roughly equal fashion. This avoids bad interac-
tions with the guest OSes internal scheduler. Currently, no attempt is made
to gang schedule VCPUs belonging to the same guest. For most workloads
this seems to work OK. In future we may have to investigate schemes that
switch to gang scheduling under certain circumstances, or otherwise use bad
pre-emption avoidance (e.g. don’t pre-empt while kernel locks held) or bad
pre-emption mitigation strategies (e.g. directed yield). It may be possi-
ble to dynamically spot groups of VCPUs that are actively communicating
and gang schedule them. We will need to extend the scheduler to better
understand CPU topology and make informed scheduling decisions in the
presence of hyperthreading or NUMA architectures (in the short term, we
can use CPU affinity settings to assist this). Due to potential information
leakage through cache timing attacks between domains sharing the same hy-
perthreaded CPU core, we may need to ensure that hyperthreads belonging
to the same core are gang scheduled for the same domain (of shared with a
trusted IO domain).

One other scheduling feature that has been discussed is instrumenting do-
main 0 to enable the work that it performs on behalf of other guests to be
accounted to those guests. The simplest way to do this is just to do some
simple counting of grant transfer and grant map events for each domain,
and then bill the CPU time consumed by domain 0 in proportion (with an
adjustment factor to account for the CPU differences between disk and net-
work IO). Although simple, this scheme would probably yield most of the
benefit, and avoid CPU-bound domains being penalized in the presence of
bulk IO.

Support for network QoS is in pretty good shape: The netback driver can
implement token bucket rate limiting (“x KB every y microseconds)”) on
any virtual interface to enforce simple max rate control. More complex
queueing and scheduling strategies can be implemented simply by invoking
Linux’s existing iptables and traffic control facilities.

Some control over disk IO bandwidth is now possible using Linux’s inbuilt

9



CFQ IO scheduler. Using ‘ionice’ it is possible to set the relative priorities
for disk accesses. More experimentation is required to determine whether
this will prove to be a sufficient means of control, or whether some further
controls (e.g. implemented in blkback) will be necessary to provide xen
admins with the features the require. Disk scheduling is a well-known thorny
research problem, and best driven by user requirements.

9 HVM (fully virtualized) Guests

As CPUs with Intel VT and AMD-V support come to market in volume,
“HVM” guest support is now a critically important core feature of Xen. The
current support we have today is “OK”, but we know we can do a lot better,
and really make the new hardware fly. This involves substantial surgery to
a number of key subsystems, but we seem to be making good progress.

9.1 Shadow Pagetables

One of the most important and complex subsystems in Xen is the shadow
pagetable code. For paravirtualized guests, this is typically only used when
guests are undergoing live relocation, but for HVM guests it is turned on the
whole time and is critical to performance. The code has to support a number
of different modes of operation, and deal with the differences between guest
and host page table levels – the code supports 2-on-2/3/4, 3-on-3/4, and
4-on-4.

The current shadow pagetable implementation is large and very complex,
partly as a result of having been hacked on by a lot of different people each
addressing their own requirements. The algorithm itself isn’t too bad, but
we’ve now accumulated a lot of profile data from different OSes to enable us
to do a better job this time round. We have designed a new algorithm and
have embarked on a complete rewrite of the code, which will take some time
complete. Because of the shadow pagetable code’s importance, testing it is
a major task as the test matrix of different OS versions and configurations
is vast. We will need to run the two code bases in parallel for some period of
time, either in different trees, or possibly in a single tree with a boot option.
We have a list of optimizations and heuristics we intend to add to the new
implementation once the core is stable. In the meantime, there are various

10



folks continuing to fix and optimize the code currently in the xen tree, which
further helps inform the new design.

9.2 QEMU

QEMU has proved to be very helpful for providing Xen HVM guests with
emulated IO devices. However, Xen’s current “qemu-dm” code has diverged
quite heavily from mainline qemu, which means that we can’t as easily
capitalise on enhancements made to mainline qemu, and also makes it harder
for us to contribute enhancements back to Fabrice. Fixing this is a priority.
We are developing a re-implementation of qemu-dm that is maintained as
a patch queue against an unmodified snapshot of mainline qemu, and hope
to have this ready for testing soon. Like the shadow pagetable code, this is
going to require extensive testing even prior to inclusion in -unstable.

Catching up with the latest version of qemu has a number of nice side effects.
It gets us Anthony Liguori’s improved VNC server code for the framebuffer,
removing our dependency on the rather obtuse libvncserver library. Further,
it gets us support for emulated USB devices, most interesting of which is
a USB mouse. The USB mouse protocol supports a mode of operation
whereby it provides absolute x,y co-ordinates rather relative motion events
(which the OS usually turns into absolute co-ordinates using some unknown
‘black box’ algorithm that has mouse speed and acceleration parameters).
Being able to inject absolute co-ordinates means that it is easy to arrange
for our the HVM guest cursor to perfectly track the local cursor in the VNC
viewer, regardless of the user’s mouse settings.

Although not immediately on the horizon, there are plans to give qemu
a slightly extended role in Xen. The ‘V2E’ research work in Cambridge
has shown that it is possible to move the execution state of a guest from
a Xen virtual machine into qemu and back out again. In the context of
the research work the aim was to enable high-performance taint tracking
to be implemented, where the guest ran at full speed as a xen guest until
it accessed a tainted value at which point execution was moved on to the
qemu emulator which was able to monitor execution closely. At some point
later execution would be moved back to Xen. As pointed out by Leendert,
a similar approach can be used for transitioning into IO emulation, cleaning
up the current interface and possibly providing performance optimizations
when many IO operations are performed in close proximity. This technique
also solves a thorny issue with Intel VT systems, which unlike AMD-V

11



do not provide h/w assistance for virtualizing the legacy x86 ‘real mode’.
Today, we have the ‘vmxassist’ code containing a crude emulator to try and
handle this case, but the code fails in the presence of certain complex 16b
applications, such as MSDOS or the SuSE graphical boot loader. Having
the ability to throw execution onto QEMU which has a complete real mode
emulation would solve this problem.

9.3 Paravirtualization Enhancements

Although we can run completely unmodified guest OSes in HVM mode, there
are significant performance advantages that can be achieved by selectively
adding paravirtualization extensions to guests. The nice thing about this
model is that the OS author can boot their OS unmodified, then incremen-
tally enhance the OS to exploit Xen’s paravirtualization hypercall API to
improve performance, for example, adding paravirtualized IO drivers, then
paravirtualized virtual memory and CPU operations etc.

The Xen API’s hypercall transfer page assists in allowing the precise method
used to make the hypercall to be abstracted from the guest (e.g. INT82
in the full-paravirtualized case, VMCALL on VT, VMMCALL on AMD-
V). However, the exact method for installing the page (e.g. by writing
MSRs) and passing in-memory arguments to hypercalls has yet to be final-
ized, though there are prototype patches in existence. Making a decision on
which approach to checkin is a priority.

Typically, the paravirtualizing extension that has most impact is switching
from using IO emulation to using PV drivers. This can be done by taking
the core of the existing netfront/blkfront/xenbus drivers and providing ap-
propriate wrappers to enable them to be built against a native (non Xen)
Linux tree, and thus loaded as modules into the native kernel running as a
HVM guest. PV drivers can similarly be prepared for other OSes.

9.4 Save/Restore/Relocation

One of the key features missing in Xen’s current support for HVM guests is
save/restore. Several subsystems need to be updated to add this support.
We need to exploit qemu’s ability to ‘pickle’ the IO state of a guest and be
able to pass it down a file descriptor. We need to add code to Xen to enable
the state of all of the high-performance emulated devices such as the PIC,

12



APIC, IOAPIC etc, to be read out via a the get domaininfo dom0 op. We
then need a simple update to the xc save code to work with auto-translate
shadow mode guests. The restore operation requires very similar changes,
enabling device state to be ‘unpickled’ in both Xen and qemu. Having got
save/restore working, live relocation should actually be relatively straight
forward, just enabling ‘log-dirty’ mode for auto-translate mode guests.

9.5 SMP Guests

The current HVM code only stably supports uniprocessor guests, though
work is underway to robustify SMP guest support. Xen already contains
APIC and IOAPIC emulation modules, but this code along with the exist-
ing shadow pagetable code lacks synchronization in certain places. The new
shadow mode code should go a long way to solving this. Work is also on-
going to add ACPI BIOS support, hence allowing the emulated platform to
look like a modern PC. The first aim for supporting SMP guests is correct-
ness, and once we have that focus on performance and scalability. Getting
fair performance for two and four way guests should be achievable for many
workloads, but this is an area where paravirtualization really helps. Even-
tually, it would be good to support CPU hotplug emulation in Xen.

9.6 Mid-term goals

Looking toward the mid-term, there are a number of projects around HVM
guests that would be good to see implemented.

One of the key desires is to move the qemu device emulation out of domain
0, and run it in a ‘stub domain’ associated with its HVM guest. A ‘stub
domain’ is the effectively the execution context associated with a domain
that a paravirtualized guest would normally use, but is currently unused for
HVM guests. Belonging to the same domain, any CPU time spent executing
in the stub domain is naturally accounted to the guest. Like normal par-
avirtualized guests, stub domains are strongly isolated from other domains.
However, given the close relationship with the HVM guest, executing transi-
tions between the two occur faster than transitions to a secondary domain.
Further, belonging to the same domain means that the stub domain can
easily map memory belonging to the HVM guest. These properties mean
that stub domains are an ideal place to run qemu, providing improved per-
formance, accurate resource accounting, and surer isolation.

13



As a user space application, Qemu can’t run in the stub domain directly, but
requires an operating system kernel. The neatest way of doing this would be
to link qemu against ‘minios’, which is effectively a library operating system
for just this purpose. Since minios makes use of a broad range of libc calls, it
is likely that minios will take some time to reach the required level of support.
In the meantime, we can just use a xen linux kernel, with a minimal config
to keep the size down. Since protection between user space and the kernel is
irrelevant in the context of running qemu as the sole application, we could
optimize performance by running user-space at the same privilege level as
the kernel, effectively turning system calls into plain jmp instructions into
the kernel followed by a ret to return.

An interesting thing becomes possible once we have qemu running in stub
domains and interfacing with the HVM guest via the ‘V2E’ approach de-
scribed previously: it becomes quite easy to enable unmodified guests to
be run on CPUs that don’t support VT or AMD-V. Gust execution in user
space would proceed in the normal xen fashion, but any transition into the
kernel would result in the guest being transferred on to qemu for emulation,
which would then transition back to native execution when the guest exited
the kernel. Having the emulation running in a stub domain is clearly im-
portant to allow the resource spend in emulation to be correctly accounted.
Performance would clearly not be as good with VT/AMD-V approach, but
this does provide a good way for folks with older hardware to experience
unmodified guests on Xen.

From our point of view, QEMU’s biggest failing is that the devices it em-
ulates are quite old, and lack some facilities that could potentially lead to
better performance. It would be nice to have an emulation of a SCSI HBA,
as most OSes typically treat these differently from an IDE device and make
more use of the ability to have multiple outstanding requests, which is es-
sential for good IO performance in a virtualized environment. BOCHS has a
simple SCSI HBA emulation, and it may be possible to use this as a starting
point.

Emulating a different network device would also offer benefits. A network
device that supported checksum offload, jumbo frames, or TSO (Transmit
Segmentation Offload) could all offer CPU savings in the guests. Since IO
performance is typically dominated by the number of ‘vmexit’ operations
required, care is required when selecting which hardware device to emulate
to ensure that the corresponding driver will generate a minimal number of
exits. Older hardware is sometimes better in this respect, since the driver

14



writer knew certain io port and mmio operations were likely expensive, and
thus went out of their way to avoided doing them. Since such io port and
mmio operations typically generate vmexits in the Xen case, minimizing
them is helpful for performance.

10 Paravirtualized Guests

As stated earlier PV guest support in Xen looks in good shape from a stabil-
ity point of view, but we do need to pay some close attention to benchmark-
ing and tuning, particularly for large SMP guests. There is undoubtedly
plenty of low hanging fruit that can be addressed to improve Xen perfor-
mance – it just hasn’t been a priority given the state of the competition.

One area that could certainly do with some attention is the 64b Linux guest
ports. The code could do with a full code review, specifically to remove
some of the unnecessary divergence from the i386 xen code, and to remove
some of the modifications relative to native that are now unnecessary. There
are a number of opportunities for investigating optimizations too. The cur-
rent code was written assuming that the “TLB flush filter” found on AMD
Opteron processors would become ubiquitous. Sadly, Intel haven’t adopted
this, and AMD have dropped the feature from future chips. There are a
number of places where TLB flushes occur in the current code where it was
expected that the flush filter would actually annul them. Given that we can
no longer rely on this, some modifications to the virtual memory virtual-
ization implementation is called for to reduce the number of TLB flushes.
One particular idea that has been mooted is using the global bit in PTEs
to preserve both Xen and User mappings across system calls. This needs to
be implemented and benchmarked. Hopefully Intel/AMD will extend the
x86 architecture with an address-space tagged TLB implementation at some
point, providing a clean solution.

One area that hasn’t received much attention recently is the “live relocation”
feature since the 32b PAE and 64b hypervisor variants were introduced.
Although the current code seems to work, it’s never been ‘productized’ on
these hypervisor variants, so shouldn’t be relied upon. The new shadow
pagetable code being developed primarily for improved HVM guest support
should also help address this concern, greatly simplifying the current code.

We also need to do some work on the xc restore function itself, modifying
it to support lazy allocation of memory to avoid the current issue whereby

15



when relocating a guest you (temporarily) need to allocate enough memory
for the maximum memory size of the guest even if its current size is much
smaller due to memory ballooning. Further, we could probably improve
guest down-time by a few 10’s of milliseconds if we did some streamlining of
the various hotplug scripts and python code that do re-plumbing of network
and block devices after a live relocation.

10.1 PV Block IO

The current block device protocols and implementations are in pretty good
shape. The work to add a secondary backend implementation called ‘back-
tap’ to support high-performance file-based qcow implementation has previ-
ously been discussed. This blkfront implementation uses the same guest IO
API, and can be used interchangeably with the current blkback and blktap
backends.

One area that does need some discussion is whether the protocol should be
extended to support in-band metadata operations, for example, enabling the
front end to issue something akin to ioctl on the backend. Such requests
could probably be implemented fairly straight forwardly, as a special variant
of a write operation that also returns data in-place. We would need to have
well defined meanings and enumeration of these ioctl-like operations since
there may be entirely different operating system kernels at either end of
the block protocol device channel. However, for ‘occasional’ ioctl operations
it might be best just to use the xenbus control channel between front and
backend. This can also be used for passing messages the other way. In
particular, we should use this protocol to handle removable media change
events better than we currently do. This mechanism could also be used to
provide notification of virtual disk size changes, enabling an on-line resize
tool to be invoked to provide seamless growing of virtual disks.

One extension that has been requested by at least one proprietary filesystem
vendor is the ability to return metadata with both read and write responses
(rather than just noting completion). This meta data is interpreted by
the file system and used to optimize certain journaling operations. These
extensions are currently considered rather specialized an probably mandate
a separate blk protocol.

Another idea that has been mooted is supporting a scsi-level device channel
protocol, and hence scsifront/back drivers. This would be useful for con-

16



trolling more ‘exotic’ devices that need a richer set of operations than just
read/write/barrier, e.g. a tape drive. It does introduce a whole load of
fairly pointless scsi command creation and parsing at either end for the nor-
mal read/write case, which may end up resulting in measurable overhead.
Experimentation is required.

10.2 PV Network IO

One key area that needs some performance tuning is the paravirtualized
network device driver. The current drivers use a page-granularity protection
mechanism to provide good containment and thus minimal trust between
the frontend and backend drivers, but this does exercise the page protection
mechanisms pretty hard.

There are a number of fairly obvious extensions to the network device chan-
nel protocol that should yield useful performance improvements. Some of
these could be implemented in a backward compatible fashion by using spare
fields in the current protocol, but at some point we’re likely to want to de-
fine the net device channel v2 protocol. This is not really a big deal as the
xenbus control plane is there to ensure that we get the right drivers bound
at each end of a device channel.

One cleanup that is required is to modify the way that the checksum offload
protocol is implemented, allowing the offset of the checksum in the packet
to be specified. This should clean up some of the current fragility we have
in domain 0 when checksum offload is enabled and certain less common
protocols are used.

Another useful improvement to the current code would be to add a flag to the
data area of skb’s that have been the subject of decrypt-in-place operations
(e.g. for IPSEC VPN’s), and only selectively scrub the flagged pages when
adding buffers to the free queue.

The current driver uses page flipping as the only mechanism for transferring
data over the device channel. The device channel mechanism is actually
quite flexible, and with a simple bit of refactoring, it should be possible to
give the hypervisor the option of either copying the packet or flipping the
page, making the decision based on the operation size. The copy operation
may become particularly attractive if high-performance multi-threaded copy
engines start becoming integrated in to northbridges, as has been speculated
in some quarters.

17



Another possibility worth investigating is the use of a semi-static shared
memory buffer between the front and backend i.e. the grant table mappings
are set up in advance for the buffer and left in place rather than being
cycled. On the receive path, netback could directly copy packet payloads
into the shared buffer from the hardware receive buffer, and then netfront
could directly copy out of the shared buffer and into a local skb (2 copies,
but no hypercalls).

It would be nice to eliminate the copy in netfront, but this is quite hard as the
skb could end up queued for an arbitrary amount of time in an application
socket buffer, hence consuming resource in the shared buffer. We could grow
the shared buffer if we run out of space, but there’s no real bound to the
size that would be needed and the number of in-flight buffers we’d have to
track. Possibly some adaptive scheme that uses copying for buffers that are
likely to be long lived or when we are low on shared buffer resource would
be possible. However, the downside of this approach is that guests have to
invest more trust in their backend domains as they retain writable mappings
to the packets sitting in kernel buffers. A buggy or malicious backend could
modify the contents of a packet buffer after the guest kernel had validated
it, and could very likely cause it to crash.

There are also performance enhancements to be achieved through support-
ing some of the higher-level features provided by modern server adaptors.
Jumbo frame support would clearly be useful, both in domain 0 and from
guest VMs, but many Ethernet installations still use a 1500 byte MTU, so
couldn’t benefit. TCP Segmentation Offload (TSO) for the transmit path
would be useful, whereby the frontend passes the backend a very large ‘su-
per packet’ for it to segment and transmit (ideally, passing it to the NIC
to do the segmentation if we can get the super packet through the bridge
and routing code). Even if we end up having to do the segmentation in
the backend we’re still better off than we were passing multiple packets as
we’ve reduced overhead and made it easier to batch work across the device
channel.

To support TSO, we need to extend the device channel descriptor format to
flag packets that should be segmented. Since super packets are unlikely to be
physically contiguous, we also need to be able to support data fragments in
the descriptor format. This should be a relatively simple extension, adding
chaining to netring descriptor entries.

In future, we should consider how we might export byte stream (TCP) data
between domains in a high performance fashion. This would be particularly

18



useful between VMs running the same machine, or when TCP Offload En-
gines (TOE) in hardware NICs become commonplace. Similarly we should
have an extended interface for exporting RDMA (Remote DMA) capabili-
ties.

Examining oprofile traces of Xen systems under heavy network load it looks
like the network bridge code running in domain 0 takes a surprisingly large
slice of the CPU. It’s quite possible that we’d do better with some cut-down
streamlined bridge code that just handles the common case that typical Xen
installations use it under. At the very least, we need to do some investigation
into why the current bridge code shows up in profile results as high up the
ranking as it currently does.

The current netfront/netback approach is geared toward having domain 0
(or another domain) acting as the switch/router for packets between other
domains. There are some circumstances where it may be more efficient to
create virtual ‘point-to-point’ links between VMs, enabling them to commu-
nicate directly without going via a software switch/router. This would be
akin to connecting two netfront devices together, allowing very high perfor-
mance networking between two VMs on the same machine. This could be
used in applications where there is effectively a processing pipeline of data
being passed between VMs. Were one of the VMs in the pipeline to be mi-
grated to a different machine, the netfront on each end of the point-to-point
link could revert back to being connected to a netback driver, fulfilling the
connection via the external network, albeit at lower bandwidth.

While adding all these extensions to the protocol we should remember that
these same paravirtualized drivers are used to provide paravirtualized IO
within HVM guests, and ensure that they work in both scenarios.

10.3 Client Devices

Although most Xen deployments are currently targeted at server machines,
improving support for desktop and laptop usage is clearly important, not
least to encourage developers to run xen on their main machines. Having
excellent support for client devices such as USB and the frame buffer is
clearly required, along with good power management.

Way back in the days of Xen 2 we had support for passing control of individ-
ual USB devices over to a guest VM. However, although apparently stable,
the implementation wasn’t ideal and was never updated to Linux 2.6. The

19



best you can do today on Xen 3 is to assign a whole USB host controller to
a guest using PCI pass-through, rather than individual hub ports as before.

There have been patches floated for adding this support back to Xen 3, but
there’s never been quite the impetus to get consensus and get something
checked in. The situation has recently become more complicated with the
USB-over-IP code now appearing in Andrew Morton’s Linux tree, perhaps
suggesting that the design should be revisited.The TCP transport would be
replaced with a reliable byte-stream device channel transport to avoid the
need for network configuration. It would be good to return USB support
to Xen 3 as soon as possible, as this will solve a number of requirements
around audio virtualization, mouse, scanners etc.

For PV guests, Xen currently only supports a virtual serial console. If
a graphical console is required the guest needs to run its own networked
frame buffer console, typically Xvnc. This is less than ideal as it requires
networking to be working in the guest before the console can be used. Serial
console serves perfectly well for boot, though some users get confused by the
differences between a serial console and a typical Linux Virtual Terminal
(VT).

The best solution to this is to implement an in-kernel fbdev paravirtual
frame buffer driver, which uses a shared memory device channel to make the
frame buffer available to domain 0, where it can either be rendered locally,
or converted to a network frame buffer protocol. This is precisely what
happens with the console of HVM guests today, so will also help unify the
‘look and feel’ between PV and HVM guests. Having the PV framebuffer as
a kernel fbdev means that it will be able to emulate a text mode and display
messages from fairly early in the boot sequence, again making operation
closer to native.

In a basic implementation, the framebuffer control software in domain 0
would run periodically and either copy the shared memory region to the
local display window, or generate the appropriate VNC updates. Scan-
ning the whole frame buffer is obviously inefficient, particularly as there are
frequently no updates, or the updates are quite localised (e.g. a flashing
cursor). The current HVM frame buffer code implements a scheme whereby
page-level write-protection of the framebuffer is used to trap updates, and
hence provide a (very) rough indication of which areas of the frame buffer
need scanning for updates. Since this code primarily uses VNC as a backend,
the current framebuffer contents is compared against a snapshot to enable a
more compact network encoding. The PV framebuffer should ideally share

20



much of this code. Rather than using a page-fault based approach, if the
guest maps the framebuffer once from a single set of pagetable pages, it may
be possible to get better performance using ‘dirty’ bits on PTEs rather than
taking write faults.

Achieving decent 2D graphics performance really requires more help than
can be achieved simply by monitoring page-level granularity updates. Ide-
ally, the framebuffer backend code would be provided with accurate bound-
ing box update rectangles, and explicit ‘copy region’ and ‘fill region’ com-
mands (along with a separate hardware cursor rather than just rendering
it into the framebuffer). In the HVM guest case, this could be achieved by
emulating a graphics card which supported (and whose common OS drivers
supported) copy and fill operations. In the PV guest case, the kernel fbdev
interface is not rich enough to supply this data, so this implies that we will
need to write an Xserver driver module that supplies this data to the back-
end via a side-band shared memory interface. Requiring modification of the
Xserver to achieve decent graphics performance is unfortunate, but there is
precedent – this is the approach VMware have taken.

Anthony Liguori and Markus Armbruster are working on a PV framebuffer
patch that addresses many of these issues and we hope to commit it shortly.

Achieving decent 3D graphics virtualization requires a substantially higher-
level interface than that for 2D. With both the Xserver and Microsoft win-
dow systems moving in the direction of using 3D rendering even for desktop
graphics, 3D graphics is becoming mainstream and not just the preserve of
games and CAD/CAM. We will need to investigate drivers that encapsulate
and transport OpenGL and/or Direct3D commands into backend domains
where they can be rendered by the 3D graphics hardware. There are already
a couple of projects that are investigating this is the context of OpenGL:
Jacob Gorm Hansen’s work presented at the last Xen summit, and a new
project at CMU/Toronto based on Chromium.

10.4 Smart IO devices

There is no denying that IO virtualization in software incurs extra latency
and CPU overhead relative to native. For applications that require the best
possible performance, some help from the IO hardware is required. For over
a decade their have been specialist ‘smart’ network interfaces available that
have had the necessary hardware support to be accessed directly from user-

21



level applications in a safe and protected fashion. Most of these interfaces
have been targeted at the High Performance Computing market, designed for
doing low-latency message passing, but some newer interfaces also support
standard TCP/IP/Ethernet protocols. The requirements made of a network
device to be able to provide safe direct access from guest virtual machines
is very similar to those for providing direct access to user-level applications
in a traditional non-virtualized environment. We anticipate many of these
smart network interfaces becoming quite mainstream over the next couple
of years as virtualization becomes ubiquitous. The same principles can also
be applied to storage access, but in our experience the benefits are less
pronounced.

Work by IBM has already demonstrated direct VM access to Infiniband
hardware on xen, and the code for this is available in the ext/xen-smartio.hg
tree on xenbits. In future, we expect to see support added for the Level5
and NetXen (previously known as UNM) smart NICs which are more like
traditional Ethernet interfaces.

Typically, the main device driver is run in domain 0, which is responsible
for allocating the NICs resources to other VMs and hence allowing them
to map page-aligned control regions of the PCI device’s address space into
their own virtual address space. The main driver also controls what mem-
ory pages each of the virtual NICs is allowed to issue DMA operations
to/from. Guest VMs use a small unprivileged driver to operate the vir-
tual NIC’s free/receive/transmit queues via their control area. The NIC
typically also supports some QoS traffic shaping of outbound traffic from a
virtual NIC, and may support more sophisticated receive demultiplex and
inbound/outbound firewalling options beyond simple layer-2 demultiplex-
ing. Having such features implemented in hardware is important as users
typically don’t want to give this up when switching from the current s/w
solution.

Before the code can be included in the main xen tree we need to have decided
the interface through which these smart NICs interact with Xen’s memory
management to ensure that a guest requesting DMAs to a page is actually
the owner of that page. Since most OSes tend to re-cycle network buffers it
is usually the case that network packets are received into and sent from a
relatively small and static pool of memory. This is quite a simple scenario
that can be dealt with by pre-pinning the buffers with the NIC and with
Xen. Storage poses more of a challenge as the pages used for DMA will
be spread throughout the system, particularly for writes (though writes are

22



less latency sensitive). Clearly, making decisions on this interface should be
strongly influenced by the support planned for chipset IOMMUs.

Another area where care needs to be taken is consideration of the interac-
tion between VM relocation and smart NICs. In general, it is not safe to
save/restore/relocate a VM that has direct access to hardware. Given that
access to the interface is under the control of the domain 0 main driver,
it is typically possible to arrange for this operation to be safe. However,
relocating a VM to another physical machine would require that the desti-
nation machine had the same smart NIC hardware, which is inconvenient.
We are considering the possibility of having a pluggable driver architecture
that could enable the domain builder to ‘slide in’ a different low-level driver
suitable for the new machine.

10.5 PV Filesystem-level Virtualization

Block-level IO virtualization provides an abstraction for accessing storage
that users will be very familiar with. However, a filesystem-level abstrac-
tion offers a number of interesting possibilities too. This would work rather
like a network file system such as NFS or OpenAFS, but without the need
for networking as a shared memory device channel transport between fs-
front/fsback would employed. Thus, “xenfs” would enable one domain to
export a subtree of its file system to be imported and mounted by another
virtual machine. A range of different semantics could be implemented, in-
cluding a typical coherent shared file-space, or copy on write.

The xenfs approach is quite interesting as it provides a very high perfor-
mance mechanism for guests to share data in a coherent fashion via shared
buffer cache mappings to the same file. A shared buffer cache could also
avoid some IO, and yield memory savings. Implementing this for PV guests
requires use of a new type of page fault, “copy-to-write” which is differ-
ent from “copy-on-write” in that the all mappings to the immutable old
page must be updated to the new copy. Fortunately, an implementation of
CTW faults for Linux has already been developed by the embedded systems
community, who need it when mapping pages stored in Flash memory.

Mark Williamson is working on the XenFS implementation.

23



11 Core hypervisor

One of the key features we’d like to add to Xen soon is the ability to run
a mix of 32b and 64b paravirtualized guests on a 64b hypervisor (just like
you can with HVM guests already today).

Because of the similarity in pagetable formats, it should be possible to run
32b PAE guests on a 64b hypervisor pretty straightforwardly and with good
performance. We just need to provide a ‘compat32’ version of the hypercall
table and export a 32b version of the ‘m2p’ table. Since the hypervisor can
live outside the 32b address space of the guest we can exploit the code in the
Linux port to allow a variable sized hypervisor hole to enable us set the hole
size to zero, giving the guest the full address space. Supporting non-PAE
guests is also possible, but would require the use of shadow pagetables to
convert between the guest and host pagetable formats. Given the resulting
performance hit, it’s probably best to just stick to PAE guest kernels.

Work on adding NUMA support to Xen is important now that integrated
memory controllers on CPUs are commonplace. The goals for this work
have been discussed earlier in this document.

Right now, Xen has no support for allowing guest kernels to exploit super-
page mappings to access 2/4MB machine-contiguous memory regions – we
always factor such mappings into multiple potentially sparse 4KB mappings.
This has the potential to impact TLB usage for some workloads [NB: it is
worth noting that both shadow-mode and direct-mode pagetable implemen-
tations mean that it is typically necessary to protect kernel mappings on
4KB page granularity so it is typically not possible to allow kernel use of
such mappings.]

Xen’s memory allocator is already capable of managing and allocating con-
tiguous memory chunks. However, we would need to add some guest ac-
counting to control the number of multi-page contiguous regions a guest
is allowed to claim, otherwise we have the potential for one guest to hog
all the contiguous chunks to the detriment of others. Such accounting is
useful today even without superpage support as privileged guests can use
machine-contiguous regions for IO purposes, and it would be good to bound
the number of these.

Adding superpage support for mappings of user-space memory for HVM
guests is pretty straightforward, though it will always be necessary to be
able to factor one of those mappings later if maintaining the invariants

24



of the shadow pagetable algorithm requires it. Support for direct-mode
paravirtualized guests should also be possible, though is made slightly more
complicated by an annoying quirk of the x86 pagetable format that means
that linear mappings interact poorly with superpage entries as it is not
possible to generate a trap if a super page PTE is accessed as though it is
an L1 entry. Places in Xen where we access the guest pagetable via a linear
mapping will need to be audited. On a 64b hypervisor there should be fewer
of these as using the direct 1:1 mapping is typically preferable.

Power management is also a concern for the mid-term. We can certainly
put idle processes into a deeper sleep state than we currently do. Looking
even further out, we could also even adapt the Xen scheduler to make CPU
clock frequency scaling decisions, and distribute load across processors to
minimize power requirements. Getting whole-system (as opposed to guest)
suspend and hibernate support would be a useful feature for laptop users.
This shouldn’t actually be too hard, to the extent that Linux supports the
function running native on a given system. We will need to add stubs in
Xen to do the final stage power down and following resuscitation.

IOMMUs look set to become common on future x86 server platforms, which
offers a number of benefits for Xen. IOMMUs are clearly useful to ensure
protection when assigning an IO device to a VM: without one a malicious
or buggy guest could destablize the system or read data belonging to other
VMs by instructing the device to DMA to/from memory pages other than
those it owns. As well as providing protection, most IOMMUs also provide
translation of DMA addresses. This means that they can be used to enable
HVM guests to be delegated direct access to a hardware device as well as PV
guests. Note that save/resume/relocate operations are likely not possible on
guests with direct hardware access, unless the hardware and driver has been
designed for this purpose.

Most IOMMUs typically don’t support the fault-and-fixup style of operation
that is common with CPU memory management: Any lookup failure is
difficult to recover from, and likely involves resetting IO buses and devices,
and likely results in lost IO operations. Xen must be able to recover from
such situations.

In the case of a HVM guest that is not actively co-operating with Xen, Xen
has to maintain an IOMMU data structure containing the full set of guest
physical pages the guest may wish to instruct the IO device to access. It
must ensure that each of those pages is pinned and hence it’s ownership
(or mmu type) can’t change. Before a page can be unpinned and released

25



(for example, by the balloon driver), xen must remove it from the IOMMU
pagetable structure, issue a flush or invalidate, and wait for confirmation
the flush has completed. On a processor supporting nested pagetables, it
may be possible to share the guest-physical to machine frame translation
pagetable with the IOMMU.

For PV guests (or HVM guests with PV extensions), the guest can be
more actively involved with co-ordinating what pages are accessible via the
IOMMU. The simplest mechanism for doing this would be to use the hooks
provided by the kernel’s DMA mapping/unmapping API and have these op-
erations call down into Xen to update the IOMMU appropriately. On x86
this strategy is likely to be quite costly as there is little batching to amortize
the hypercall to do the mapping, though unmapping can potentially be done
lazily provided the pages remain pinned.

Driver domains need to perform IO on behalf of other domains, and the
grant table mechanism gives them the ability to create temporary mappings
to read/write data. To be able to deliver data in a zero copy fashion, page
grants need to be extended to the IOMMU. The grant table mechanism was
designed with this in mind, so it’s a relatively straightforward extension.
When calling into xen to map a grant handle, a guest can specify whether
the page should also be added to the IOMMU. The grant unmap operation
can operate in a similar fashion.

The only potential issue with this approach is that at the point that the
map operation is performed the device that is going to be doing the IO
may not yet be known (for example for network transmit we need to do the
map operation before we can inspect the packet header and determine the
destination interface). In most situations, it probably makes sense for all
devices under control by the same driver domain to share the same pagetable
structure, so this is not an issue. If this is not the case, mapping can be
deferred to the kernel’s DMA mapping functions, but there is likely to be
less batching to amortize the hypercall cost.

In 32b x86 Xen, address space is at a premium. This leads to the notion of
xen heap pages and separate ‘domain pages’. The former may be accessed
by Xen rapidly in any context, whereas domain pages must be mapped
dynamically on demand. On x86 64 this distinction is redundant as Xen
has a 1:1 mapping of all physical memory, and hence domain pages may be
accessed efficiently. However, the current x86 64 code inherits the statically
sized heap from 32b xen. As an immediate fix, this heap is arguably too
small for a large x86 64 machine, and limits the number of VMs that can

26



be started (the limit is lower than on 32b as the domain structure for VMs
is larger on 64b builds). A better solution might be to unify the xen and
domain heaps on 64b builds.

IBM have led the excellent work to add fine-grained access control mech-
anisms to Xen’s low-level interfaces. However, the current dom0 control
interface has a very simple ‘flat’ notion of privilege, and extending this to
allow more flexible delegation of control over guests would certainly be de-
sirable for some deployment scenarios.

Today, there already exists a notion of a bitmap of privilege capabilities that
a guest has. (Note that this is orthogonal to the sets of physical resources it
has control over such as ranges of machine address space, io ports etc). The
current capability set is rather small, and could no doubt be made more fine
grained.

More interestingly, it would be useful to be able to delegate privilege such
as to be able to grant a domain permission to perform a certain privileged
operation on some specified other domain or group of domains. This leads
naturally to a hierarchical model of domain resource allocation and permis-
sion, for example allowing a domain with only a very restricted privilege
capability to create a new domain by carving it out of its own resource al-
location. It would then have full control over this domain, allowing it to
destroy it, pause it, map its pages, attach a debugger etc.

From Xen’s low-level ‘datapath’ point of view we want to flatten this hier-
archy to keep the privilege check operations as simple as possible, with only
the control operations having to worry about the extra complexity. Citing
the example in the previous paragraph of having one domain build another,
this should be quite achievable as some care is already taken to have the
domain builder use standard unprivileged interfaces.

12 Testing and Debugging

Users require Xen to be a rock-solid stable system component, achieving
greater stability than the OSes which run on it. Generally, we don’t do too
badly on this front. We’re fortunate to have a relatively small and tight code
base, coupled with significant investment in testing by a number of parties.

The tip of the -unstable tree is exercised daily by IBM, Intel and VirtualIron
as well as XenSource. The XenSource test reports are viewable on the web

27



at http://xenbits.xensource.com/xenrt, while other reports go to the xen-
devel list. The continuous testing provides a good way of monitoring the
progress toward stability of new features, and for flagging regressions.

In fact, most potential regressions never make it out into the -unstable tree,
as they are picked up by automated testing in the staging tree, which gives
changesets a grilling on three different machines (32b, PAE, and x86 64)
before pushing the changesets out to -unstable. Hard-core developers want-
ing to see checkins as soon as they happen can do so by subscribing to
xen-staging@lists.xensource.com.

Prior to the 3.0 release we released a special testing CD and encouraged users
to download and run it on their hardware then upload the results. The CD
provided booted a native Linux kernel followed by 32b, PAE and x86 64
kernels (as appropriate for the hardware), running a whole series of tests
and benchmarks under each and recording the results to a log file which was
then uploaded. The test CD proved very useful identifying machines Xen
struggled on, and helped us get many of the issues fixed prior to release. Post
release, the 3.0 demo CD has proved useful in debugging various platform
issues reported by users, enabling them to collect and supply developers
with data from both native and xen kernel boots.

One avenue we are investigating to help find bugs is submitting Xen to the
OSS code scanning programme run by Coverity with funding from DARPA.
Coverity’s tools have proved useful in finding bugs in a number of other
kernel-level projects, so it makes sense to investigate. The tool will likely
generate a long list of possible issues, which will require a concerted effort
from the community to investigate and classify, and fix the subset that are
real bugs.

Even with the best possible test and QA programme, some number of in-field
crashes will be sadly inevitable. In these circumstances, it’s important that
developers can gather as much information as possible from the incident.
For user-space incidents, ‘xen-bugtool’ is useful for collecting log files and
system details. For more serious failures of domain 0 or xen itself we can’t
rely on things getting logged in standard files, and need support for taking
a system core dump. Horms is doing great work to get kexec working in
domain 0, meaning that we will be able to use kdump to write out a system
core.

Dumping a full copy of system memory can be quite time consuming on
a machine with lots of RAM, so we will possibly have to consider putting

28



a little more intelligence in the dump routines to harvest the most useful
information e.g. a quick dump that concentrates on CPU register state and
stack information for xen and dom0, and a more comprehensive dump that
collects all xen and dom0 state and just register and stack info for other
guests. We certainly need tools to help pick apart these dumps and turn
them into a form that gdb can load to assist examination.

For xen developers there are a number of debugging aids that can called
on. There is a serial gdb stub that can be connected to remotely and used
to examine both xen and domain 0. Since this halts the system while the
debugger is connected, it typically can’t be used on production systems.
One frequently useful tool is the debug console, which by default is accessed
by hitting ctrl-A three times on the serial console. Hitting ‘h’ gives a help
menu of features the console can perform. It’s main use is for diagnosing the
state of the system in event of a hang. Register dumps can be used to see
what all the CPUs are doing, whether guests are servicing interrupts etc.
The console also provides access to the software performance counters and
other statistics.

Debugging guest VMs can be achieved using Xen’s gdbserver support. When
gdbserver is started in dom0 against a particular VM, it effectively imple-
ments gdb serial stub functionality on behalf of the guest, enabling gdb to
connect to the gdbserver via a TCP port. gdbserver has recently been ex-
tended to support both PV and HVM guests. If getting register and stack
state for all the VCPUs from a guest is all that’s required, the ‘xenctx’
command is quicker than firing up gdb.

When guest VMs crash we currently have the option to preserve the VM,
enabling debugging via gdb or xenctx. However, it would be useful to have
the option to write out a core image of the guest VM. This is not quite the
same as doing a VM save-to-disk operation, as we would like to write the
image out in a form that gdb could then inspect. The old xen 1.2 tools had
basic guest core dump support, and it would be good to see this feature
back in Xen 3.

13 Misc

We need to add a hypercall to xen to allow a guest to extend the size of
it’s grant table. This should be straightforward, but in its current absence
is the restriction which leads to the current “max 3 VIF’s per guest” limit.

29



Actually, this restriction could also be solved by making the allocation of
grant table entries to a VIF dynamic, as already happens with the blkfront
driver. We should implement both strategies forthwith.

It would be useful to add PV extensions to guests to assist in taking con-
sistent filesystem snapshots, for example, when creating “template VMs”.
The obvious way of doing this would be to extend the xenbus mechanism
used to deliver shutdown requests and ‘magic sysrq’ operations. Adding the
ability to issue “sync disks and pause” and “remount filesystems read-only
and pause” would be useful.

We need to make a few simple extensions to the control API to allow the
set of CPU feature flags exposed to a guest VM (both HVM and PV) to be
“cooked” such that features may be hidden. This is useful in a heterogenous
CPU environment where it may be desirable to only allow guests to see
a lowest common denominator set of flags such that save/restore/relocate
images remain portable.

The linux guest code currently implements a strict priority ordering over
how it services pending event channels. We may wish to replace this with
a scheme that uses round-robin servicing of events within each group of
32 event channels, thus providing a hybrid approach that supports both
prioritization and fairness. This is purely a guest issue, and the current
strict priority scheme doesn’t seem to cause any problems today.

Currently, each PV guest is allowed just a single virtual serial console device.
Although once we have PV framebuffer support (and associated virtual ter-
minals) virtual serial console support will be less important, it would still
be nice to support multiple consoles per guest. This should be relatively
straight forward, requiring updates to the console frontend driver, xencon-
soled, and the tools.

When using ‘xm mem-set’ commands to control the amount of memory in a
guest its currently quite easy to set the target too low and create a ‘memory
crunch’ that causes a linux guest kernel to run the infamous ‘oomkiller’ and
hence render the system unstable. It would be far better if the interaction
between the balloon driver and linux’s memory manager was more forgiving,
hence causing the balloon driver to ‘back off’, or ask for more memory back
from xen to alleviate the pressure (up to the current ‘mem-max’ limit).
The hard part here is deciding what in the memory management system to
trigger off – at the point where the oom killer runs the system is typically
already unusable, so we want to be able to get in there earlier. Seeking

30



advice from Linux mm gurus would be helpful.

When PV guests boot, the kernel and initial ram disk images must be sup-
plied to the domain builder. This is not unlike what happens when a physical
machine boots using PXE. However, from a maintenance point of view it
is very convenient to store the kernel and initrd in the guest virtual disk
image, where it can be kept in-sync with its kernel modules. This has led to
a couple of different schemes to read the kernel and initrd from out of the
guest filesystem as part of the PV guest domain building process. pygrub
uses libext2/libreiser to read the images out of the guest filesystem, whereas
domUloader mounts the guest filesystem in dom0 to extract the files. The
latter suffers from potential security issues in the presence of maliciously
crafted filesystem images, but is otherwise simpler to set up.

A better solution to this problem would be to use a bootloader run within
the guest domain. This could be done using a cut-down linux instance that
kexec’s the final guest kernel, or by porting a bootloader such as grub to
be able to use the PV net/block devices. Grub2 has quite wide filesystem
support and is considerably easier to work on than the old grub code, so
adding these drivers may not be that difficult. Grub supports a wide range
of filesystems, including UFS that used by Solaris. [NB: is UFS supported
in Grub2?]

The save/restore/relocate in Xen provides almost all we need to be able to
take copy-on-write snapshots of VM’s memory, to be used for rollback or
to checkpoint long running jobs (if the guest is communicating with other
machines then the wider effect of such a rollback must be considered). To
be able to support checkpoints, we need to extend the tools to coordinate
snapshotting of virtual disks with taking the execution state snapshot. As
well as enabling such checkpoints to be initiated from the control tools,
perhaps providing the ability to trigger them from within the guest would
be useful too. A natural progression from supporting checkpointing would
be to enable “VM forking”. Rather than creating a read-only checkpoint,
the VM effectively becomes cloned, running in a different domain, writing to
a CoW snapshot of the disk. For VMs that have network access a mechanism
is needed for enabling the IP configuration of the guest to be updated for
the cloned VM. It should be possible to add code in the PV ‘resume’ path
to change the IP address and update listening sockets while closing open
connections.

Xen currently lacks support for devices that require ISA DMA (DMA below
16MB). Although ISA devices are rare these days, some PCMCIA cards have

31



the same restriction (particularly older WLAN cards), creating problems for
some laptops. We need to assess whether adding such support is going to
be worth the effort or not.

Adding support for call graph support into xen oprofile would be useful.
This would involve capturing the first few items on the stack as well the
EIP (though there would be issues when frame pointers are missing).

Hardware performance counters are currently considered to be system-wide,
which works great for xen oprofile, but prevents guests from profiling them-
selves. Adding support to allow performance counters to be efficiently con-
texted switched between domains would be useful (though use in this manner
would be mutually exclusive with system-wide use).

Although efforts are made to ensure the security of the xen hypercall API,
it wouldn’t hurt to do a complete code audit: it is critical that unprivilged
guests should not be able to access data that doesn’t belong to them, or
crash the system. Efforts should be made to bound the scope of ’denial of
quality of service’ attacks too.

A useful tool to help test the integrity of the xen guest API would be a
xen equivalent of the ’crashme’ tool used for testing the Linux process API.
The tool would attempt to upset Xen by operating like a normal guest
but using random numbers to perturb hypercall arguments, make ’difficult’
corruptions to pagetables and other structures etc. (e.g. mutually recusrsive
pagetables would be ain interesting one).

Finally, its about time we did another iteration on the user manual, wiki
and other documentation to ensure its up to date and relevant.

14 The IA64 ports

The IA64 port is making excellent progress with contributions from HP,
Intel, Fujitsu, Bull and VALinux to name but a few. Base performance is
currently excellent, incurring an typical overhead of around 2% on native.
Multiple Linux domains are supported (including support for virtual SMP),
and clean shutdown has been completed. In addition the source code has
been reorganized to produce a clean abstraction layer at the source level;
with this patch applied, the resulting kernel binary can be run both under
Xen and on bare metal.

32



Xen/ia64 is also getting close to feature parity with the x86 ports. Vir-
tual block device using the standard backend/frontend model has been inte-
grated, and the same set of control tools and commands are used to manage
the system.

There is also support for VT-i — the hardware virtualization e-technology
for IPF — which allows the running of completely unmodified guest oper-
ating systems along-side paravirtualized domains. Once again, the control
tool set has been aligned with the VT-x model to maximize compatibility.

In terms of hardware compatibility, it has been extensively tested to operate
on the following configurations:

• Intel Tiger4

• HP rx2600/rx1600/rx2620 (and likely any HP zx1 based system)

• Bull NovaScale 4000 and 6000 systems, with 5000 to follow

• Fujitsu Primequest series

In terms of future work, the main areas are:

1. Completing/stabilizing the work to give each guest a virtual physical
address space;

2. Implementing save/restore and migration;

3. Providing support for driver domains; and

4. Additional stability / performance testing and improvements.

15 The PowerPC Port

The PowerPC work, led by IBM, is focusing on the PowerPC 970 proces-
sor which includes hardware extensions designed to support paravirtualized
operating systems. An additional parallel development task is looking at
getting Xen running on 970s with hypervisor mode disabled (e.g. Apple G5
systems).

The port doesn’t use the standard split driver model yet, but is running
guests. We hope that the code can get merged into -unstable in the next
couple of months; various changes to support this forthcoming merge have
already been incorporated (e.g. the use of copy from guest() which on

33



PowerPC uses physically addressed scatter/gather lists). Further changes
to common code will also be required, which may modify the dom0 API,
and so we need to ensure that people have advance warning before any such
changes go in.

Power Xen currently only runs on the Maple 970 processor evaluation board,
but support for IBM JS21 blades and other 970-based machines will follow
soon.

16 Aims for next two releases

16.1 3.0.3 aims; end July to synchronize with FC6 freeze

• new CPU scheduler

• cow file-backed virtual hard disk support

• qemu-dm updated to latest qemu version, stored as patch queue

• basic NUMA memory allocator support

• kexec support

• xend VM life-cycle management

• new shadow pagetable code?

16.2 3.0.4 aims; end Sept

• new xml-rpc control API

• simple storage management in xend

• qemu ‘v2e’ integration

• PV network virtualization improvements

• PPC merge?

• PV USB support ?

34



17 Task priority list

Schedule:
1 - 3.0.3: end July
2 - 3.0.4: end Q3 2006
3 - Q4 2006/Q1 2007
4 - beyond

These priority ratings indicate where various features could be targeted to
land on the roadmap. It reflects where the xen core team is planning on
concentrating its effort, coupled with input from work that we already know
is happening in the community. Obviously other folk will have different
ideas of priority and will scratch their own itch and submit patches. We
should obviously try to iterate in order to get such patches included ASAP,
regardless of the below suggested schedule.

35



Sched Area Description
1 tools xend VM life-cycle management
1/2 tools XML config file and conversion tools
1/2 tools standardized xen control API: xml-rpc over https/unixdomain

sockets
1/2 tools C++/perl/python bindings for control API
2 tools simple storage management in xend
3 tools revive guest coredump support
3 tools split VM relocation operation into two parts and authenticate
3 tools DMTF CIM providers
3/4 tools Web GUI for Xen
1 storage blktap (or other) support for file-based virtual disk storage.
2 storage blktap plugins for common formats
2 storage optimized qcow implementation
3 storage consider adding write accounting/throttling on current loop driver
3 storage support for block IO QoS. Use CFQ and ionice, or implement in

blkback?
3/4 storage ’ioctl’ support between blkfront/back
3/4 storage media change, size change event propagation to guest userspace
4 storage consider SCSI level storage virtualization option
1/2 network TCP Segmentation Offload support in device channel
2 network checksum offload cleanup
2 network hypervisor chooses to copy vs. page flip
2 network dynamic allocation of grant table entries; grant table resize
2 network investigate whether bridge code needs to be ’streamlined’
2 network jumbo frames support in dom0 and device channel
3/4 network investigate static shared buffer approach
3/4 network TCP Offload Engine support in device channel
3/4 network investigate high-performance point-to-point link support
4 network RDMA support in device channel
1 xen extensive benchmarking and perf tuning
1 xen CPU scheduler that balances VCPUs, implements weight & caps
1/2 xen initial NUMA mechanism checkin
2 xen live relocation tuning, robustification, tools safety interlock
2/3 xen support for running 32b PAE guests on a 64b hypervisor
2/3 xen improved NUMA policy code
2/3 xen add order>0 guest memory allocation accounting
2/3 xen extend x86 64 heap size; merge xen and domain pools
3 xen investigate bad pre-emption avoidance/mitigation strategies
3 xen add superpage support for PV guests
3 xen IOMMU support: isolation of devices to domains; grant table

integration
3/4 xen lazy memory allocation for live relocation of ballooned guests
4 xen fine-grained delegation for dom0ops; hierarchical resource model
4 xen power management enhancements: CPU sleep, freq scaling
4 xen power management enhancements: suspend/hibernate
4 xen accounting and billing time IO domains spend on behalf of guests

36



Sched Area Description
1 hvm fix current shadow pagetable code, add PAE-on-PAE mode, SMP

safety
1 hvm upgrade QEMU version, maintain as a patch queue
1/2 hvm rewrite shadow pagetable code to optimize, simplify
1/2 hvm finalize interface for making hypercalls from VT guests
2 hvm HVM save/restore support; qemu, xen, and tools changes
2 hvm basic SMP HVM guest support; ACPI tables, locking safety
2/3 hvm change QEMU-xen interface to use the ’v2e’ approach
2/3 hvm SMP HVM guest performance and scalability
2/3 hvm support real superpage mappings for HVM guests (after adding

accounting)
2/3 hvm implement high-performance SCSI HBA emulation
2/3 hvm implement high-performance Ethernet emulation
3 hvm live relocation. Add log-dirty support
3 hvm move QEMU into a ’stub domain’ linked against a linux kernel
3/4 hvm move QEMU into a ’stub domain’ linked against a minios
4 hvm HVM hotplug CPU emulation
1 linux extensive benchmarking and perf tuning
1/2 linux SMP scalability improvements
1/2 linux work to get xen in to kernel.org linux
2 linux code review of x86 64 port
2 linux investigate proposed x86 64 optimizations
2 linux improve interaction between balloon driver and page allocator to

avoid memory crunch
2/3 linux support for multiple virtual serial consoles
3 linux consider hybrid round-robin/priority scheme to service event

channels
1/2 client basic kernel fbdev paravirtual framebuffer implementation
2/3 client USB virtualization; investigate USB-over-IP code
2/3 client Xserver support for ’h/w cursor’, copy rect and fill rect
3/4 client OpenGL/Direct3D virtualization
2/3 misc support for dom0 kexec/kdump to get a machine core
3 misc infiniband direct guest IO support (finalize interface, merge xen-

smartio.hg)
3 misc support for hiding CPU feature flags from guests (PV and HVM)
3/4 misc smart NIC direct guest IO support
3/4 misc submit xen for scanning by Coverity tool; investigate warnings

flagged
3/4 misc tools support for doing auto CPU/memory resource allocation

across VMs
3/4 misc support to checkpoint/rollback guests
4 misc port Grub2 bootloader to net/blockfront devices
4 misc investigate ’pluggable driver architecture’
4 misc xenfs filesystem-level virtualization; shared buffer cache
4 misc do we need support for ISA/PCMCIA DMA (below 16MB)?

37


